
Robust Trajectory Execution for Multi-Robot
Teams Using Distributed Real-time Replanning

Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

University of Southern California, Los Angeles CA, USA,
{baskin.senbaslar, whoenig, ayanian}@usc.edu

Abstract. Robust trajectory execution is an extension of cooperative
collision avoidance that takes pre-planned trajectories directly into ac-
count. We propose an algorithm for robust trajectory execution that
compensates for a variety of dynamic changes, including newly appear-
ing obstacles, robots breaking down, imperfect motion execution, and
external disturbances. Robots do not communicate with each other and
only sense other robots’ positions and the obstacles around them. At
the high-level we use a hybrid planning strategy employing both discrete
planning and trajectory optimization with a dynamic receding horizon
approach. The discrete planner helps to avoid local minima, adjusts the
planning horizon, and provides good initial guesses for the optimization
stage. Trajectory optimization uses a quadratic programming formula-
tion, where all safety-critical parts are formulated as hard constraints.
At the low-level, we use buffered Voronoi cells as a multi-robot collision
avoidance strategy. Compared to ORCA, our approach supports higher-
order dynamic limits and avoids deadlocks better. We demonstrate our
approach in simulation and on physical robots, showing that it can op-
erate in real time.

1 Introduction

Motion planning for multi-robot systems is particularly important in cases where
many robots must interact with each other in confined spaces, potentially with
many obstacles. Examples include coordination of robots in warehouses [18],
traffic management at intersections [6], and airport management [12]. Modern
planning algorithms can find trajectories that effectively coordinate hundreds of
robots while approximately optimizing objectives such as total energy used [9];
however, all such solutions assume that the resulting trajectories can be executed
nearly perfectly, which is an unrealistic assumption for teams of hundreds of
robots that must operate persistently.

To compensate for changes in the environment or imperfect execution, one
might apply cooperative collision avoidance strategies, such as ORCA [2], at
runtime. However, such algorithms often operate locally and do not take the
pre-planned trajectories into account. Robust trajectory execution, on the other
hand, avoids future collision more effectively because it directly considers pre-
planned trajectories. Consider the example in Fig. 1(a), where two robots must

2 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

swap positions. The pre-planned trajectories are collision-free, but they do not
consider the newly introduced obstacle and the blue robot does not start at its
correct location. However, the pre-planned trajectories can be used as guidance
for replanning. In this example, robots can get stuck if a local cooperative colli-
sion avoidance strategy is applied. Using our method, the robots can successfully
swap positions, while staying as close as possible to the pre-planned trajectories,
as in Fig. 1(b). Our method is fully distributed and requires no communication.
The robots only need to know their own trajectories and be able to sense other
robots’ positions and the obstacles around them.

(a) (b)

Fig. 1. (a) Two robots (green and blue circles) are tasked with following their pre-
planned trajectories (green and blue dashed lines). The initial plans were created with-
out the knowledge of the obstacle (gray) and the blue robot does not start at its
planned initial position. (b) Our approach computes smooth trajectories in real-time,
avoiding both the new obstacle and other robots while staying close to the pre-planned
trajectory.

Robust trajectory execution is an extension of cooperative collision avoid-
ance where the objective is to stay as close to the originally planned trajectories
as possible. In contrast, traditional collision avoidance methods frequently only
take a desired velocity, desired goal state, or desired action as input (we discuss
these in more detail in Section 2). Our method relies on Buffered Voronoi Cells
(BVC) [19] as the underlying cooperative collision avoidance strategy and retains
the same theoretical guarantees. We employ a novel combination of trajectory
optimization and discrete search-based planning using a dynamic receding hori-
zon approach. The discrete search allows us to avoid local minima effectively
even in difficult scenarios, while the trajectory optimization generates smooth
trajectories that are collision-free.

The main contribution of this work is a novel distributed algorithm for robust
trajectory execution that considers higher-order dynamic limits. It also compen-
sates for a variety of dynamic changes, including imperfect motion execution
of robots, newly appearing obstacles, robots breaking down, or external distur-
bances. We show in simulations that our method avoids deadlocks better than
ORCA [2]. Furthermore, we implement and test our approach on a team of six
differential drive robots with several dynamic environmental changes.

Robust Trajectory Execution for Multi-Robot Teams 3

2 Related Work

Our method is closely related to cooperative collision avoidance such as recip-
rocal velocity obstacles, buffered Voronoi cells, and safety barrier certificates.
Methods based on reciprocal velocity obstacles (RVO) [3] assume that robots
continue with constant velocity and compute the safe configuration space such
that no other robot might collide for the time horizon. Many extensions of the
RVO method have been proposed, see [1] for an extensive overview. Buffered
Voronoi Cells (BVC) [19] compute the safe configuration space for a robot by
its Voronoi cell shifted by the physical extent of the robot. Safety barrier cer-
tificates achieve collision-free operation by modifying a user-specified controller
such that no collision can occur [17]. Our robust trajectory execution approach
uses cooperative collision avoidance at its core (specifically BVC), while extend-
ing it to minimize the difference to the original trajectories (rather than just a
preferred velocity as in [1], preferred control input as in [17], or difference over
a fixed time horizon as in [19].)

Our method is inspired by our previous work on offline planning for robotic
teams [9] and uses the same optimization framework based on Bézier curves to
generate trajectories, although with a different cost function. Similar to previous
work we use discrete search to quickly get out of local minima, but do so in a
distributed manner.

While our approach naturally works in multi-robot settings, some of the
methods are inspired by single-robot optimization and collision avoidance. Local
collision avoidance for single robots such as UAVs can be formulated as optimiza-
tion problems [13,16]. In both cases collisions are considered as a soft constraint
in the cost function using a Euclidean (Signed) Distance Field. In contrast, our
formulation uses a hard constraint allowing us to easily detect infeasible trajec-
tories. The optimization can use a discrete plan as an initial guess [13] or shift
the existing trajectory based on newly appearing obstacles [16]. In contrast, our
approach shifts the existing trajectory whenever possible, while falling back to an
efficient discrete planner with dynamic receding horizon to avoid local minima.

3 Problem Formulation

The general problem we would like to solve can be formulated as follows. Con-
sider a group of m robots. Each robot i is given the following:

oi(t) : original trajectory (R→ Rn) of ith robot where time t ∈ [0, Ti],

c : order of derivative up to which smoothness is required,

R(p) : convex collision shape of any robot at position p,

γk : dynamic limit of the robot for the kth derivative of its trajectory.

Each robot i can sense the positions {p1, . . . ,pm} of other robots as well as
the current occupied space Oi around it1. We represent Oi as a set of θ convex

1 Since our approach can accommodate many sensing modalities, we do not provide a
specific sensing capability in the general problem.

4 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

obstacles. Robots are unaware of the other robots’ planned trajectories, and
cannot communicate with each other. Each robot i must execute a trajectory
fi(t), where fi(t) is a solution to the following optimization problem:

minimize

∫ Ti

0

‖fi(t)− oi(t)‖2 dt

subject to

fi(t) is continuous up to degree c,

djfi
dtj

(0) =
djpi
dtj

(0) for j ∈ {0, 1, ..., c}

fi(t) is collision-free, and∥∥∥∥dkfi(t)dtk

∥∥∥∥ ≤ γk for all desired k,

where t ∈ [0, Ti].

(1)

We solve this problem approximately, using a dynamic receding horizon ap-
proach iteratively. At every iteration K, robot i plans a trajectory fKi (t) that
starts at the robots’ current position and is safe to execute up to the user-
provided period δt. We set R(p) to a sphere with radius rs centered at p.

4 Preliminaries

This section introduces important mathematical concepts and notations that
will be used throughout the paper.

4.1 Buffered Voronoi Cell

Given a set of m robots with positions p1,p2, . . . ,pm ∈ Rn and radii rs ∈ R,
the buffered Voronoi cell Vi of robot i is defined as [19]:

Vi =

{
p : ∀j 6=i

pj − pi
‖pj − pi‖

· p− pj − pi
‖pj − pi‖

· pj + pi
2

+ rs ≤ 0

}
, (2)

where ‖p‖ is the L2-norm of the vector p.
The inequality inside (2) defines a hyperspace Sji bounded by hyperplane Hji

that separates point pi from pj . Hji has normal αji ∈ Rn and distance βji ∈ R
along αji such that

αji =
pj − pi
‖pj − pi‖

and βji = αji ·
(

pi + pj
2

)
− rs. (3)

For a given buffered Voronoi decomposition of the space, any point p ∈ Rn
can be inside of at most one of the buffered Voronoi cells. We use this property
in order to avoid robot-to-robot collisions.

Robust Trajectory Execution for Multi-Robot Teams 5

Using the hyperspaces Sji we can reformulate Vi as follows:

Vi =
⋂
j 6=i

Sji , where Sji =
{

p : αji · p− β
j
i ≤ 0

}
. (4)

Thus, we can compute the buffered Voronoi cell of any robot i as the set of
the hyperplanes Hji in O(m) time.

4.2 Bézier Curve

A degree d Bézier curve f(t) implicitly parametrized by duration T is defined by
d+ 1 control points P0,P1, ...,Pd ∈ Rn such that

f(t) =
d∑
i=0

Pi

(
d

i

)(
t

T

)i(
1− t

T

)d−i
, 0 ≤ t ≤ T. (5)

The curve starts at P0 and ends at Pd, however does not interpolate other
control points. A Bézier curve lies completely inside the convex hull of its control
points [7]; we leverage this property to avoid robot-to-obstacle collisions.

We use splines as trajectories with user-specified number of pieces (l) and
degree (d), where each piece is a degree d Bézier curve. Given a trajectory fKi (t)
for robot i with l pieces and duration TKi at iteration K, TKi,j denotes the dura-

tion of the jth piece where j ∈ {1, 2, . . . , l}. fKi,j(t) denotes the jth piece of the

trajectory with implicit duration parameter TKi,j where t ∈ [0, TKi,j]. PK
i,j,ρ denotes

the ρth control point of the jth piece where ρ ∈ {0, 1, . . . , d}.

4.3 Trajectory Optimization using Quadratic Programming

Our replanning approach utilizes quadratic programming (QP) for trajectory
optimization. The decision variables x are the concatenated Bézier curve control
points. The overall structure of our quadratic optimization problem is as follows:

minimize
1

2
xTHx + xTg

subject to lbA ≤ Ax ≤ ubA.
(6)

A quadratic cost function is represented using the matrix H and the vector
g. The quadratic cost function we use is described in Section 5.2.

The constraints are represented using the matrix A with vectors lbA and
ubA. Notice that all constraints should be linear in the decision variables. There
are three types of constraints we impose on the curves: initial point constraints,
continuity constraints, and hyperspace constraints. An initial point constraint on
a Bézier curve requires the initial point of the curve to be equal to a given vector
in a specified degree of differentiation. This translates to n linear constraints on
control points, n being the dimension we are working in. A continuity constraint
between curve j and curve j + 1 requires the end of curve j to be equal to the

6 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

beginning of curve j + 1 at any order of differentiation. We take the vector dif-
ference of those values and require it to be equal to 0. This translates to n linear
constraints on control points. A hyperspace constraint requires all control points
of a curve to be on a specific side of a hyperplane. If a curve has d + 1 control
points, this translates to d + 1 constraints on control points. All three types of
constraints are linear in control points. The exact construction is discussed in a
previous work [9].

5 Approach

Replanning is done at a fixed period of δt. In each iteration K, we sense the other
robots’ positions to compute the buffered Voronoi cell Vi, update our current
representation of the occupied space (Oi), and compute a trajectory fKi (t). The
planning horizon τ ′ is automatically adjusted, but the desired planning horizon
τ can be provided.

We execute the following three major components iteratively: discrete plan-
ning that is used to efficiently plan around new obstacles, trajectory optimization
to generate smooth and collision-free trajectories, and temporal rescaling to en-
force the dynamic limits of the robot (see Fig. 2).

In the beginning of each iteration, we check several conditions to decide
if discrete planning is required. If discrete planning is required, we execute a
discrete search that results in a discrete path that is collision-free but not smooth.
We use this discrete path as an initial guess in trajectory optimization. If discrete
planning is not required, we use the control points of the previous plan as the
initial guess.

We construct a QP with hard constraints for trajectory optimization in a
slightly different way depending on whether discrete planning was executed or
not. In both cases, buffered Voronoi cells are used to ensure collision-free opera-
tion for time δt and collisions with static obstacles are avoided for the planning
horizon.

Dynamic limits cannot be represented as linear constraints in our QP. Thus,
we check dynamic limit violations in the temporal rescaling stage that runs after
optimization. While dynamic limits are violated, we increase the durations of all
trajectory pieces uniformly, and since the initial point constraints are violated
when the durations are increased, we re-solve the QP.

At the end of each iteration, each robot has its trajectory fKi (t) that is guar-
anteed to be collision-free up to time δt; is continuous up to the cth derivative;
obeys the dynamic limits of the robot; tries to stay close to the original tra-
jectory; and is a good starting point for the next iteration. We execute this
trajectory for a period of δt and replan for the next iteration.

5.1 Discrete Planning

Robot i executes discrete planning if any of the following conditions are true,
where ψ = Kδt is the current time:

Robust Trajectory Execution for Multi-Robot Teams 7

Discrete
replanning
required?

Discrete
Search

Construct
QP

Construct
QP

Trajectory
Optimization

Dynamic
limits

violated?

Rescaling

Yes

No

No

Execute for δt and start next iteration

Yes

Discrete Planning (5.1) Continuous Optimization (5.2) Temporal Rescaling (5.3)

Fig. 2. Overview of the replanning pipeline.

1. The original trajectory is not collision-free for the desired time horizon τ ,
i.e., ∃t ∈ [ψ,ψ + τ] : R(oi(t)) ∩ Oi 6= ∅,

2. The first piece of the previously planned trajectory is outside the robot’s
buffered Voronoi cell, i.e., ∃t ∈ [0, TK−1i,1] : fK−1i,1 (t) 6∈ Vi, or

3. The previously planned trajectory is not collision-free for the desired time
horizon τ , i.e., ∃t ∈ [0, τ] : R(fK−1i (t)) ∩ Oi 6= ∅.

The first condition handles cases where previously unknown obstacles block the
pre-planned path of a robot. The second condition handles cases where pre-
viously unknown robots appear and cases where robots are close and moving
towards each other. The third condition handles dynamic obstacles, and also
infeasibilities and numerical issues that resulted in a trajectory with collisions
in the previous iteration. Sections 5.4 and Section 6.1 detail reasons for infeasi-
bilities and numerical issues, respectively.

Discrete planning uses a dynamic receding horizon approach. First, we find
the earliest time τ ′ ∈ [min(τ, Ti − ψ), Ti − ψ] where the original trajectory is
collision-free at time ψ + τ ′ with respect to both obstacles and other robots.
Second, we use a discrete graph search to find a path from the robot’s current
location to oi(ψ + τ ′) that avoids both static obstacles and other robots. If τ ′

does not exist or no solution path exists, we skip the discrete planning stage
and construct the QP as if discrete planning was not required. Third, we use
the first l segments of the discrete path to uniformly place the new estimated
control points on top of those segments. In case the discrete path has fewer than
l segments, the last discrete segment is shared between multiple Bézier curves.
Finally, we adjust TKi,j relative to the segment lengths and scale by τ ′, such that
we would arrive at time ψ+ τ ′ at oi(ψ+ τ ′) if we followed the discrete path with
constant speed. To guarantee collision-free operation, we ensure that TKi,1 ≥ δt
in any case.

An example is shown in Fig. 3 (a), with parameters l = 4 and d = 7. Discrete
planning is executed because the original trajectory (green dashed line) passes
through an obstacle. We find the earliest time τ ′ such that R(og(ψ + τ ′)) does
not intersect with the obstacle and the blue robot where g is the green robot.

8 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

The discrete planner is then used to find a path (green dotted line) that avoids
both the static obstacle and the other (blue) robot, with a total of six path
segments. The first four segments (l = 4) are used to place new guesses of Bézier
control points (blue, green, red, and cyan circles). Notice that since d = 7, each
curve has eight control points, while some of the points are overlapping. The
duration TKi,j for each Bézier curve is adjusted linearly according to its segment
length; for example, the duration of the segment with the red control points
(TKi,3) is approximately twice as long as the duration of the segment with the

green control points (TKi,2).

(a) (b)

Fig. 3. Example at t = 3.9 s. (a) Discrete path around an obstacle and other robot
back to the original trajectory. (b) Continuous trajectory split into four pieces and
respective hyperspaces.

5.2 Continuous Optimization

We compute a new trajectory by formulating a quadratic program where the
decision variables are the concatenated control points of the pieces. The pa-
rameters d and l of the pieces (see Section 4.2) are provided by the user. If
discrete planning is not performed, initial guesses of the decision variables are
copied from the previous iteration, and the durations TKi,j are set uniformly to
min(τ,Ti−ψ)

l . If discrete planning is performed, initial variables and durations are
calculated from the discrete path as explained in Section 5.1. The objective that
we minimize is defined

E∑
e=1

λe

∫ TK
i

0

∥∥∥∥defKi (t)

dte

∥∥∥∥2 dt+
l∑

j=1

θj
∥∥PK

i,j,d − χj
∥∥2 , (7)

where χj is the point where we want piece j to end. The first term of the objective
minimizes the energy along the trajectory, and is the combination of integrated
squared derivatives up to user provided degree E with weights λe [9,14]. The
second term of the objective penalizes deviation from the given end points for
each piece of the trajectory with different weights θj . In case discrete planning
is performed, we attempt to get to the position of the last guessed control point,

Robust Trajectory Execution for Multi-Robot Teams 9

i.e., we set θl to a positive value, enforcing PK
i,l,d = χl, and θj = 0, ∀j < l. If

discrete planning is not performed, we attempt to stay as close as possible to the
original trajectory, i.e., we set θ1 = 0, and θj , ∀j ≥ 2 to positive values (increasing

with j) and χj = oi(ψ+
∑j
u=1 T

K
i,u). The matrix H (see Section 4.3) for the first

term of our objective can be constructed as in our previous work [9]. The second
term is a quadratic function of the control points; hence it is straightforward to
construct the H matrix and the g vector.

For robot-to-robot collision avoidance, the buffered Voronoi hyperplanes are
computed according to (3) and m− 1 hyperspace constraints are added for the
first piece. These constraints ensure that the first piece stays inside Vi because
of the convexity of Vi and the convex hull property of Bézier curves. As long as
TKi,1 ≥ δt and all other robots stay inside their Voronoi cells up to time δt, we
can be sure that no robot-to-robot collision will occur up to time δt.

For robot-to-obstacle collision avoidance we compute separating hyperplanes
between convex obstacles Oi for each curve piece j. Let M b

j be the hyperplane

that seperates the initially guessed control points of the jth piece from the bth

convex obstacle obtained from Oi (these can be computed, e.g., using support
vector machines [4]). We shift each hyperplane towards its obstacle and than
shift it back using the radius rs to account for the physical extent of the robot.
We add hyperspace constraints as before, requiring control points of the jth piece
in the non-occupied side of each hyperplane M b

j . These constraints ensure that
no robot-to-obstacle collision will occur up to time τ ′. In case discrete planning
was executed, we additionally treat other robots as static obstacles. Fig. 3(b)
shows the effective set of hyperspaces for our example.

Moreover, we add continuity constraints that enforce the continuity require-
ments between pieces and initial point constraints that enforce continuity re-
quirements between iterations.

All constraints are linear and matrix A and its bounds can be constructed as
in Section 4.3. The number of decision variables in our QP is l(d + 1)n. Let θ′

describe the number of considered static obstacles, i.e., θ′ is equal to θ+(m−1)
if discrete planning was performed and θ otherwise. We add (m − 1)(d + 1) +
θ′l(d + 1) + (c + 1)nl linear constraints, where the terms refer to the Voronoi
hyperspace, obstacle hyperspace, and continuity constraints, respectively. For
our example in Fig. 3, we have n = 2, m = 2, d = 7, l = 4, and c = 2. Thus, we
have 64 decision variables and 8 + 128 + 24 = 160 linear constraints.

5.3 Temporal Rescaling

Since we use fixed durations of the pieces and do not account for the dynamic
limits of the robot during optimization, the resulting trajectory may violate
the dynamic limits of the robot. After trajectory optimization, we calculate the
maximum magnitudes Γk of the kth derivatives of the curve, and check if there
exists a k such that Γk > γk, where γk is the dynamic limit of the robot in the kth

derivation degree. If that is the case, we uniformly scale the piece durations TKi,j ,
and re-run the trajectory optimization with the same exact constraints using

10 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

the previous result as the initial guess. If the dynamic limits are not violated,
no temporal rescaling is needed and the trajectory is feasible.

5.4 Theoretical Guarantees

For robot-to-robot collision avoidance our approach uses buffered Voronoi cells
which has the following theoretical guarantee: if robots start in a collision-free
configuration (that is, ‖pi − pj‖ ≥ 2rs, ∀i 6= j), then all future configurations
are collision-free. However, this guarantee has only been proven for the case
of synchronous robot execution, if robots have first-order integrator dynamics
(c = 0), and if they execute their trajectories perfectly [19]. The QP in our
formulation has additional constraints that can cause it to be infeasible. However,
in this case, one can simply fallback to the QP formulation of the BVC approach
to retain the same theoretical guarantee.

Formal guarantees under arbitrary disturbances and higher order dynamics
cannot be provided. In fact, our QP can fail if it is not feasible to satisfy all
safety and continuity constraints under the given dynamic limits. However, our
empirical evaluation presented in Section 6.1 shows that the QP rarely fails
and even if it does, the robots do not collide with each other and the obstacles
since the QP becomes feasible in the following iterations. In addition, our QP
formulation allows us to easily detect failure cases because we model all safety-
critical parts as hard constraints.

Similar to other work, there are no formal liveness guarantees and there
might be deadlocks [19]. Nevertheless, our approach works in practice for robots
with higher-order dynamics, if robot execution is asynchronous, or trajectories
are not executed perfectly.

6 Evaluation

We implement our approach in C++. We use an occupancy grid as the environ-
ment representation, because previous work has shown that such data structures
can be updated in real-time on robots that are equipped with a LIDAR sensor
or an RGB-D camera. In particular, OctoMap [10] is an octree-based 3D occu-
pancy grid that can be run on unmanned aerial vehicles with at least 4 Hz update
rate [13]. OctoMaps are memory efficient, but update operations can show high
execution time variance. For local replanning, occupancy grids using ring buffers
as data structures have been shown to achieve near constant execution time [16].
Our implementation uses a simple pre-initialized 2D occupancy grid.

We use the CVXGEN-package [11] to generate small QPs to find separating
hyperplanes between control points and obstacles. We test with qpOASES [8]
and OSQP [15] as QP solvers; both are open source and have been shown to
work well in model predictive control scenarios.

A supplemental video containing some of our simulations and physical ex-
periments is available at https://youtu.be/LbWRvLfdwTA.

https://youtu.be/LbWRvLfdwTA

Robust Trajectory Execution for Multi-Robot Teams 11

6.1 Simulation

We test our algorithm in a simulation running on a laptop computer (i7-4700MQ
2.4 GHz, 16 GB) with Ubuntu 16.04 as the operating system.

In the first set of experiments, we test the scalability of our method in terms
of the number of pieces l we plan for, the number of occupied cells θ in the
occupancy grid and the number of robots m. Our results are summarized in
Tables 1, 2, and 3, where tavg is the average time that qpOASES takes per
iteration. Our algorithm scales well with the number of robots. In terms of
number of curves, our algorithm has almost the same performance up to l = 10.
For the simulations and physical experiments we did, we never needed more
than l = 4. The bottleneck of our algorithm is the number of occupied cells in
the occupancy grid. However, as it can be seen in Table 2, our algorithm still
has real-time capability when considering hundreds of occupied cells, assuming a
10 Hz execution. When we use OSQP instead of qpOASES, our implementation
takes significantly more time if we consider many obstacles. For example, when
we do experiment 7 using OSQP, it takes 297 ms on average.

l θ m tavg [ms]

1 4 0 4 10

2 8 0 4 15

3 10 0 4 13

4 12 0 4 27

5 16 0 4 107

Table 1. Runtime with
varying curve count l.

l θ m tavg [ms]

6 4 4 4 9

7 4 62 4 28

8 4 196 4 47

9 4 213 4 69

10 4 1250 4 253

Table 2. Runtime with
varying occupied cells θ.

l θ m tavg [ms]

11 4 5 4 9

12 4 5 8 10

13 4 5 16 13

14 4 5 32 15

15 4 5 64 14

Table 3. Runtime with
varying robot count m.

ORCA DS+ORCA Our Method

m θ tavg [ms] s tavg [ms] s tavg [ms] s QP failures [%]

16 2 4 < 1 0 < 1 2 7 2 0.00

17 4 12 < 1 0 < 1 4 10 4 0.30

18 8 30 < 1 4 < 1 8 13 8 0.00

19 16 9 < 1 13 < 1 16 12 16 0.08

20 32 30 < 1 23 < 1 32 16 32 0.09

Table 4. Comparison of our method, ORCA, and DS+ORCA with respect to average
computation time (tavg), the number of robots that reach their destinations (s), and
the percentage of time that our QP fails.

We also compare our method to two ORCA variants in the second set of
experiments. In the first ORCA variant, we use the RVO2 library [2] and set the

preferred velocities at time ψ to o′i(ψ) if pi ≈ oi(ψ) or to oi(ψ)−pi

δt otherwise.
In the second ORCA variant, we combine ORCA and our discrete planning

12 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

method with a dynamic receding horizon approach (denoted as DS+ORCA). We
demonstrate that this variant resolves deadlocks better than the first variant.
For our method we use δt = 0.1 s, l = 4, and d = 7 and for the ORCA variants
we use δt = 0.01 s. The results are summarized in Table 4. All robots using our
method or DS+ORCA reach their destinations, while robots using ORCA can
easily get stuck around obstacles. Our method takes more time in computation
compared to the ORCA variants, but produces smooth curves up to a user-
defined smoothness. We use c = 2 in our experiments meaning that the generated
trajectories are continuous in position, velocity, and acceleration. The ORCA
variants, on the other hand, provide smoothness guarantees up to c = 0 only,
i.e., velocities can jump between iterations. Furthermore, the ORCA variants
must sense the other robots’ velocities and positions while our approach relies
on positions only.

We also report the percentage of time our QP fails, which happens no more
than 0.3 % of the time. Notice that even if our QP fails, robots do not collide
with each other and the obstacles, because the QP becomes feasible in the follow-
ing iteration after 100 ms. There are two reasons for QP failures: infeasibilities,
which are explained in Section 5.4, and numerical issues. The numerical issues
stem from separating hyperplane calculations between robots and obstacles. We
use hard-margin SVMs to calculate separating hyperplanes. When robots get
too close to obstacles, small epsilon values in SVM optimization may result in
invalid hyperplanes, and hence QP fails. The original trajectories and the occu-
pancy grids in some experiments are shown in Fig. 4 and the supplemental video
contains selected simulations.

(a) (b) (c)

Fig. 4. The original trajectories and the occupancy grids in the simulation experiments
17 (a), 19 (b), and the physical experiment (c).

6.2 Physical Robots

We implement our approach on six differential drive robots (iRobot Create2)
that are equipped with one of ODROID C1+ or ODROID XU4 single-board
computers. Those computers run Ubuntu 16.04 with ROS Kinetic, but C1+ has

Robust Trajectory Execution for Multi-Robot Teams 13

very limited computation capabilities (ARM Cortex-A5, max. 10 W). The robots
are arranged in a circle (2 m radius) and are tasked with swapping sides (Fig. 4c).
We plan the original trajectories with one static obstacle using a centralized
planner [5]. Each robot receives the position information of all other robots using
a motion capture system. A trajectory tracking controller and our algorithm run
on-board at a frequency of 10 Hz.

We conduct several experiments and add an additional obstacle, change the
robots initial position, disturb the robots during run-time, or artificially stop
one of the robots. In all cases robots successfully avoid collisions and in many
cases they reach their final destination within the originally planned durations.
We also saw a few cases where robots got into a deadlock, which we attribute to
the fact that the robots, unlike the simulation, cannot execute very low velocity
commands. The supplemental video includes recordings of our experiment.

7 Conclusion

We present a method for robust trajectory execution that takes pre-planned tra-
jectories as input and compensates for a variety of dynamic changes, including
imperfect motion execution, newly appearing obstacles, robots breaking down, or
external disturbances. Our approach does not require communication between
the robots. We use a novel planning strategy employing both discrete plan-
ning and trajectory optimization with a dynamic receding horizon approach. We
demonstrate in simulation and on physical robots that we can generate smooth
trajectories in real-time, while avoiding deadlocks successfully. In comparison,
ORCA neither generates smooth trajectories nor avoids deadlocks in our test
cases.

In future work we would like to conduct additional experiments with robots
using on-board perception and flying robots, handle dynamic obstacles, and
consider communication between robots to improve their plans. We also would
like to actively address numerical issues and QP infeasibilities.

Acknowledgements

This research was supported in part by Office of Naval Research grant N00014-
14-1-073 and National Science Foundation grant 1724399. B. Şenbaşlar grate-
fully acknowledges the support from the Fulbright program sponsored by U.S.
Department of State.

14 Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian

References

1. Alonso-Mora, J., Beardsley, P.A., Siegwart, R.: Cooperative collision avoidance
for nonholonomic robots. IEEE Transactions on Robotics (T-RO) 34(2), 404–420
(2018)

2. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision
avoidance. In: Int. Symposium of Robotic Research (ISRR), pp. 3–19 (2009).
Software available at http://gamma.cs.unc.edu/RVO2/

3. van den Berg, J.P., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-
time multi-agent navigation. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 1928–1935 (2008)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

5. Debord, M., Hönig, W., Ayanian, N.: Trajectory planning for heterogeneous robot
teams. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2018).
Accepted. To appear.

6. Dresner, K.M., Stone, P.: A multiagent approach to autonomous intersection man-
agement. Journal of Artificial Intelligence Research (JAIR) 31, 591–656 (2008)

7. Farouki, R.T.: The bernstein polynomial basis: A centennial retrospective. Com-
puter Aided Geometric Design 29(6), 379–419 (2012)

8. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: A
parametric active-set algorithm for quadratic programming. Mathematical Pro-
gramming Computation 6(4), 327–363 (2014)

9. Hönig, W., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S., Ayanian, N.: Trajectory
planning for quadrotor swarms. IEEE Transactions on Robotics (T-RO) 34(4),
856–869 (2018)

10. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous
Robots 34(3), 189–206 (2013). Software available at http://octomap.github.com

11. Mattingley, J., Boyd, S.: CVXGEN: a code generator for embedded convex opti-
mization. Optimization and Engineering 13(1), 1–27 (2012)

12. Morris, R., Pasareanu, C.S., Luckow, K.S., Malik, W., Ma, H., Kumar, T.K.S.,
Koenig, S.: Planning, scheduling and monitoring for airport surface operations. In:
AAAI Workshop on Planning for Hybrid Systems, AAAI Workshops, vol. WS-16-
12, pp. 608–614 (2016)

13. Oleynikova, H., Burri, M., Taylor, Z., Nieto, J.I., Siegwart, R., Galceran, E.:
Continuous-time trajectory optimization for online UAV replanning. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5332–5339 (2016)

14. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadro-
tor flight in dense indoor environments. In: Int. Symposium of Robotic Research
(ISRR), pp. 649–666 (2013)

15. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator
splitting solver for quadratic programs. ArXiv e-prints (2018)

16. Usenko, V.C., von Stumberg, L., Pangercic, A., Cremers, D.: Real-time trajec-
tory replanning for MAVs using uniform B-splines and a 3D circular buffer. In:
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 215–222
(2017)

17. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free
multirobot systems. IEEE Transactions on Robotics (T-RO) 33(3), 661–674 (2017)

http://gamma.cs.unc.edu/RVO2/
http://octomap.github.com

Robust Trajectory Execution for Multi-Robot Teams 15

18. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine 29(1), 9–20 (2008)

19. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoid-
ance for dynamic vehicles using buffered voronoi cells. IEEE Robotics and Automa-
tion Letters (RA-L) 2(2), 1047–1054 (2017)

	Robust Trajectory Execution for Multi-Robot Teams Using Distributed Real-time Replanning

